
AthenaInstruments

Accelerating the practical application of generative AI in var�

ied workflows

Tim Child

2025-05-02

Table of contents
Problems . 1

Overview . 2

Use cases . 2

Typical user . 2

Power user . 3

Tech stack . 4

Web application . 5

Backend . 5

Language models . 5

User Authentication . 5

Persistence . 5

Third party services . 6

Deployment . 7

Monitoring . 8

Security . 8

Problems
Here’s a short overview of some of the problems that currently exist in the generative

AI space, that AthenaInstruments aims to solve:

• The best generative AI providers change on a weekly basis – It’s not optimal to be

tied to a single provider given the pace of innovation

• The best models are different for different tasks – Even if you’re tied to the best

overall provider, they may not have the best models for every task.

1

• The model doesn’t know your workflows – You know how a certain task should be

carried out, but the model is going to make up a new method every time it’s asked.

Overview
AthenaInstruments is a platform that tackles these problems without re-inventing the

wheel.

I want to provide users an easy way to work at the cutting edge of generative AI without

needing to be an expert in the field, or to re-build their workflows on a weekly basis.

At the same time, I want to let the user have access to the customizations they are

most interested in.

The general idea is to build a platform that works well for a range of tasks right out

of the box, seamlessly taking advantage of the best models from any provider on any

given day. And then to expose the tools that allow us to provide this service in a way

that an interested user can tweak an existing service to their needs, or build a whole

new service from scratch if they so desire.

Use cases

Typical user
For the typical user, initially, the platform will behave much like the products offered

by the large generative AI providers including:

• OpenAI

• Google

• xAI

• Anthropic

• etc.

It will be a chat interface (with multimodal inputs), that produces a text (or speech)

output, potentially with images or other media depending on the task. They won’t

need to do anything different from how they’d interact with any of the other services.

The differences will all be behind the scenes:

• The assistant will seamlessly chose an optimized workflow for the task at hand¹

¹I expect several of the offerings from the big players take a similar approach, but we have the
advantage of having access to all of them.

2

‣ If all we need to do is respond to a simple “hello”, it could pick a fast a friendly

model – maybe this week the best for that is Claude-Haiku – and it’s response can

be returned directly, and quickly.

‣ If the task is more complex – say a user wants to generate a report on a topic –

it seamlessly hands off to a more sophisticated workflow that can produce a fully

formatted PDF report.

• Before producing a report, and even before calling any LLMs, we can first draw on

a range of other services to gather some preliminary data quickly.

‣ E.g., Loading recent news articles, searching the web, checking if the user has

previously discussed this topic or given preferences as to how they like their

reports formatted, etc.

‣ This can all be done in parallel, and typically takes less than 1 second.

• Now, we are ready to get a first draft of the report. We call on the best models from

each of OpenAI, Google, and Anthropic simultaneously to get their best drafts.

‣ Again this happens in parallel, and we can – for example – decide that if we’ve

already got two answers back, that we don’t need to wait for the third.

• Then, we ask another agent that is specifically set up (and trained) to generate report

content based on those answers and the most relevant data we’ve gathered so far.

‣ At this point, the agent could also decide that the drafts aren’t good enough yet,

and first demand a better draft from the LLMs while giving it’s feedback to them,

or it could present a friendly prompt to the user to provide some key missing data.

• Finally, a custom service converts the report into a PDF and attaches it to the

message that is sent back to the user along with a summary of the steps taken and

the key findings.

Power user
For a power user, the platform will provide a friendly interface that exposes all the

crucial knobs and buttons that facilitate building a custom workflow.

For example, a project manager that would like morning coffee updates on the

progress of a project, but doesn’t want to bog down their team with the task of coming

together to produce a one page summary every day. They know that what they’d really

like can be boiled down to a process like:

• Gather data for project X and employees Anna, Bob, and Charlie from:

‣ The latest commits in GitHub

‣ The latest issues opened/closed in Jira

‣ The latest messages in the project Slack channel

3

• Also look at the last weeks worth of morning summaries (and whether any feedback

on those was given)

• Generate a new morning summary for today

They can spend some extra time at the beginning of the project to set this custom

workflow up. The process could look something like this:

• The PM sees that there are already agents that are good at getting data from each

of GitHub, Jira, and Slack, so adds those to the main agent, and then in plain english

says: “I want you to call the GitHub, Jira, and Slack agents simultaneously for project

X over the last 48 hours for employees Anna, Bob, and Charlie and see what’s new.”

• There’s also a tool for searching previous messages, so they add that option, and

continue descrbing what they want: “You should also get the last weeks worth of

morning summaries and see if I gave you any feedback on those that you should

take into account for this report.”

• There’s already a report generating agent, so they add that too and say: “Once you

have all that data, generate a new morning summary for today. I want to know what

progress was made yesterday, what’s planned for today, whether anyone is blocked,

or likely to be blocked soon, and any other relevant information.”

That’s enough to get started, and if the summary isn’t quite right on the first day, they

can just give some feedback and get an updated version right then, and the next day

the custom agent will already know to take that feedback into account.

Even 3 weeks into the project, when that initial feedback won’t be directly collected in

the data gathering step for that days morning report, since the agent will still see the

last weeks worth of morning summaries, it’s going to produce a report that is similar in

form and quality to those, so it’s probably going to still be following that earlier advice.

And, if what you really want to see changes over time, it will change with you, even

without needing to update the workflow.

Tech stack
Now I’ll break down the various parts of the system:

• Give an overview of the technologies used

• Discuss the choices made

• Address the scalability of each part

4

Web application
I use reflex, a new python framework that facilitates rapid development of perfor-

mant Next.js websites with a python FastAPI backend and websocket communication

between them. This largely achieved in pure python, although tweaks can be made

easily with added javascript.

This provides a convenient environment to utilize the versatility of python (particularly

for new AI libraries) without sacrificing a performant front-end, and without requiring

a separate development team. This allows for a faster development cycle with more

cohesion at a lower cost.

Backend
The core of the backend is written in python, with an architecture that allows for any

bottlenecks to be re-written in a more performant language (go or rust) as needed.

For the main workflows, the large language models are the main bottleneck anyway,

so python being a slow language is not a significant issue.

The larger issue with python is codebase maintainability, however, that is addressed

by the use of linting and static type checking.

Language models
The main language model part of the backend takes advantage of the LangGraph library

that facilitates graph-based workflows based on Googles Pregel system. This allows for

relatively unbounded complexity in the workflows that can be created, while efficiently

parallelizing the computational steps.

A lot of the computation work here is currently offloaded to the LangGraph Platform

API. They are currently offering a very good value for money service while they expand

their user base. In anticipation of price hikes or scaling issues, an adapter layer has

been implemented to facilitate an easy switch to a self hosted service if needed.

User Authentication
User authentication is offloaded to Clerk and is integrated directly into the frontend

and backend allowing for a seamless user experience and a secure system.

There is no real limit on scaling here.

Persistence
Long term data is stored in a PostgreSQL database. Short term data uses a much faster

Redis database that shared with the reflex framework for managing client sessions.

5

https://research.google/pubs/pregel-a-system-for-large-scale-graph-processing/

Initial scaling here can be handled by using more powerful servers. This alone should

easily handle up to millions of users. (Additional scaling beyond that will require more

work, but is a standard problem with common solutions.)

Third party services
Currently, in addition to the integrations that form the core of the system, there are

other third party services that have been integrated to provide additional function-

ality. At the moment, this is limited to:

• Tavily for LLM friendly web searching

• GitHub for optimized repository data retrieval

The system is designed to be easily extensible to include a range of additional services.

The current limited services are intended to provide a proof of concept for the

system’s ability to integrate with external services.

Services such as Tavily are easy to integrate with, but they are also potentially

places where internal implementations could be added to further reduce costs and/

or provide more optimized services.

The GitHub integration is a good example of a bespoke service offered in AthenaIn-

struments for which an equivalent is not widely available, and for which a custom

implementation is necessary for optimal performance. Currently, a custom data inges-

tion pipeline is used to create local vectorized representations of the data (including

private repositories if the user grants access). Custom tools can be provided to the

LLM agents so that they can interact with this data efficiently (while ensuring no data

leakage between users).

This also provides an opportunity to implement organizations or workspaces that

allow data to be efficiently shared between users within the same organization.

Future integrations are planned with services such as:

• Storage:

‣ Google Drive

‣ Dropbox

‣ OneDrive

• Communication:

‣ Slack for team communication

‣ Discord for community building

• Project Management:

‣ Jira for project management

6

‣ Confluence for documentation

‣ Notion for note-taking

‣ Trello for task management

• CRM and Support:

‣ Salesforce for CRM

‣ Zendesk for customer support

• Marketing:

‣ Mailchimp for email marketing

‣ Hubspot for marketing automation

• Analytics:

‣ Google Analytics for web analytics

‣ Hotjar for user behavior analytics

 Note

I believe that building these integrations in-house will be crucial to optimizing

the performance of the system when integrated with various LLMs. Additionally, I

believe that offering a few well-integrated services will be more valuable to users

than the approach that many of the larger companies are taking, where they leave

it up to external developers to build integrations with their services.

Deployment
Deployment is currently handled via automated GitHub Actions workflows that build

and deploy first to a staging server, and only to a production server after an automated

test suite has passed.

This ensures a high level of reliability of the user-facing service, while still allowing for

continuous deployment of new features, security updates, and bug fixes. It’s currently

possible to patch and deploy a fix in under 15 minutes with no downtime and cutting

no corners on the standard security and testing protocols.

The deployed service is currently hosted on a single DigitalOcean virtual private server

with docker compose managing the various services that run in tandem. This is cost-

effective at this early stage, and the various services are all designed with future

scaling via a kubernetes cluster deployment in mind. Although, even a simple load

balancer would be sufficient for a significant scale up.

7

Monitoring
Live monitoring is an area that is currently lacking, however, there are several inter-

faces already implemented that allow for manual monitoring and management of the

system. Future work to implement a more automated approach is planned, but not

yet a priority.

Security
Security is a top priority, and the system has been designed with security in mind from

the ground up. All network communication is encrypted end-to-end, and all persistent

user data is stored encrypted at rest. Additionally, because Clerk is used for user

authentication, there is no possibility to leak sensitive user data as it is never persisted

in our system.

All interactions with large language model providers are anonymized and encrypted.

Still, a significant amount of work will likely be required in preparation for a security

audit before obtaining certification of security compliance.

8

	Problems
	Overview
	Use cases
	Typical user
	Power user

	Tech stack
	Web application
	Backend
	Language models
	User Authentication
	Persistence
	Third party services
	Deployment
	Monitoring
	Security

